Uniformly Porous Nanocrystalline CaMgFe1.33Ti3O12 Ceramic Derived Electro-Ceramic Nanocomposite for Impedance Type Humidity Sensor
نویسندگان
چکیده
Since humidity sensors have been widely used in many sectors, a suitable humidity sensing material with improved sensitivity, faster response and recovery times, better stability and low hysteresis is necessary to be developed. Here, we fabricate a uniformly porous humidity sensor using Ca, Ti substituted Mg ferrites with chemical formula of CaMgFe1.33Ti₃O12 as humidity sensing materials by solid-sate step-sintering technique. This synthesis technique is useful to control the grain size with increased porosity to enhance the hydrophilic characteristics of the CaMgFe1.33Ti₃O12 nanoceramic based sintered electro-ceramic nanocomposites. The highest porosity, lowest density and excellent surface-hydrophilicity properties were obtained at 1050 °C sintered ceramic. The performance of this impedance type humidity sensor was evaluated by electrical characterizations using alternating current (AC) in the 33%-95% relative humidity (RH) range at 25 °C. Compared with existing conventional resistive humidity sensors, the present sintered electro-ceramic nanocomposite based humidity sensor showed faster response time (20 s) and recovery time (40 s). This newly developed sensor showed extremely high sensitivity (%S) and small hysteresis of <3.4%. Long-term stability of the sensor had been determined by testing for 30 consecutive days. Therefore, the high performance sensing behavior of the present electro-ceramic nanocomposites would be suitable for a potential use in advanced humidity sensors.
منابع مشابه
Dielectric characteristic of nanocrystalline Na0.5K0.5NbO3 ceramic green body
Dielectric spectroscopy was applied to porous nanocrystalline Na0.5K0.5NbO3 (NKN) ceramic green body, wherein influences of percolation effect and water adsorption at pore surface of the ceramic green body on dielectric response were examined over wide temperature (150 to 450 K) and frequency (100 Hz to 1 MHz) ranges. Dielectric permittivity of the ceramic green body is about 2–3 orders of magn...
متن کاملSynthesis and Characterizations of Novel Ca-Mg-Ti-Fe-Oxides Based Ceramic Nanocrystals and Flexible Film of Polydimethylsiloxane Composite with Improved Mechanical and Dielectric Properties for Sensors
Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx), their chemical reactions and bonding with polydimethylsiloxane (PDMS) were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was...
متن کاملDesign and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption
Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,T...
متن کاملPreparation of SiO2/ZrO2 ceramic nanocomposite coating on Aluminum alloys as metallic part of the photovoltaic cells and study its corrosion behavior.
Nowadays due to water shortage, the use of air humidity as the sustainable solution has been considered by cities located in coastal zones; especially in warm and humid climate. However, the use of air humidity also has its own problems such as corrosion of metal parts in photovoltaic cells that used for energy supplying and they are often made of Aluminum alloy. Therefore different methods suc...
متن کاملDEVELOPMENT OF ZrO2-TiO2 POROUS CERAMIC AS SOIL HUMIDITY SENSOR FOR APLICATION IN ENVIRONMENTAL MONITORING
Due to the necessity of the automation and control of processes in agriculture, as well as to the crescent interest for the environmental monitoring, efforts have been demanded in the development of more versatile, reliable sensors and sensor systems with smaller cost [1,2]. In this sense, the search of new materials, the modeling study of sensor and the development of new measurement technique...
متن کامل